an open access


a state-of-the art facility for sample growth, sample characterization and advanced on-line spectroscopy
Apply for access

The core preparation and characterization facility of the NFFA-APE laboratory is a multicomponent UHV system. This facility is designed to serve as open platform to analyse and optimize nanoscience samples, for which the sample preparation and survey represent crucial and integral part of the experiment.

Thin film deposition and epitaxial growth systems are available at NFFA-Trieste for constructing complex materials and samples, e.g. digital heterostructures, on single-crystal substrates. Molecular Beam Epitaxy as well as Pulsed Laser-ablation Deposition offer competitive methods for in-situ single crystal thin films. E-beam sources and boat-type evaporators provide physical beams for submonolayer to few-monolayer thick deposits on surfaces at various kinetic conditions (down to cryogenic substrate temperatures) in all in-situ chambers and in-operando.

The NFFA offer includes a facility for spectroscopic investigation of solid surfaces and nanostructured matter. The NFFA laboratory is integrated with a synchrotron radiation beamline (Advanced Photoemission Experiment APE beamline), exploiting polarized synchrotron radiation in the ultraviolet and soft X-ray range from the Elettra storage ring. Photons with chosen polarization are emitted by Apple II insertion devices. The low-energy beamline (APE-LE) covers 8-120eV photon energy range dedicated to high-resolution angle-resolved photoemission (ARPES) and spin-resolved ARPES; the high-energy beamline (APE-HE) covers 150-1600 eV photon energy range used for X-ray absorption (XAS), magnetic circular/linear dichroism (XMCD, XMLD), core level photoemission (XPS).

The European Commission encourages Open Science and FAIR data, since it is recognised that they improve and accelerate scientific research, increase the engagement of society and contribute significantly to economic growth.
Therefore, all H2020 European projects that produce, collect or process research data are recommended to start dealing with the issues related, as detailed in the Guidelines on Open Access to Scientific Publications and Research Data in Horizon 2020.
NFFA-Trieste supports the principle of open data access as a fundamental part of its mission.

The NFFA theory branch, by providing state-of-the-art first-principles simulations based on density functional theory, is mainly planned to support the interpretation of various experimental results obtained at other NFFA-Trieste labs. The main theory focus is on understanding microscopic mechanisms behind the observed phenomenology and investigating structure-property relationships or complex cross-coupling effects on different materials of interest. Following the comparison between theory and experiments, an “optimization” phase based on identifying guidelines and eventually performing “materials design” is available.

users' endstations

at MM building at Q2 building at Elettra experimental hall at CNR-IOM cloud at Fermi-T-Rex laboratory Surface & Nano Science Lab, STM/STS PLD XPS & ambient pressure XAS ARPES & Spin ARPES MOKE & Masked deposition system XPS MBE Oxides SPRINT laboratory SEM XRD PVD data repository open data data analysis
Watch the video

APE endstations

Two spectroscopy end-stations connected to two independent ondulator radiation sources, but also interconnected for in -situ sample exchange
  • Source
  • Photon energy range (eV)
  • Polarization
  • Flux on sample @ 10 um slits (ph./s)
  • Resolution (E / dE)
  • Beam size on the sample (H X V, um2)
  • Experimental techniques
  • Temperature range for spectroscopies (K)

NFFA scientists


contact us